CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular Therapy - Nucleic Acids

Por um escritor misterioso

Descrição

CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Melatonin Repairs Osteoporotic Bone Defects in Iron-Overloaded
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
CRISPR/Cas9-mediated A4GALT suppression rescues Fabry disease
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Understanding the molecular basis and pathogenesis of hereditary
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Functional genomics and the future of iPSCs in disease modeling
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Characterisation of a novel OPA1 splice variant resulting in
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
IJMS, Free Full-Text
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Functional genomics and the future of iPSCs in disease modeling
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Frontiers CRISPR/Cas9: implication for modeling and therapy of
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Enhanced genome editing in human iPSCs with CRISPR-CAS9 by co
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Melatonin Repairs Osteoporotic Bone Defects in Iron-Overloaded
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
CRISPR/Cas9-mediated A4GALT suppression rescues Fabry disease
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
JCM, Free Full-Text
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Frontiers Establishing induced pluripotent stem cell lines from
CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial  homeostasis in dominant optic atrophy patient-derived iPSCs: Molecular  Therapy - Nucleic Acids
Drosophila model to clarify the pathological significance of OPA1
de por adulto (o preço varia de acordo com o tamanho do grupo)